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Abstract

Unlike most desert-dwelling animals, Cataglyphis ants do not attempt to
escape the heat; rather, they apply their impressive heat tolerance to avoid
competitors and predators. This thermally defined niche has promoted a
range of adaptations both at the individual and colony levels. We have also
recently discovered that within the genus Cataglyphis there are incredibly
diverse social systems, modes of reproduction, and dispersal, prompting the
tantalizing question of whether social diversity may also be a consequence of
the harsh environment within which we find these charismatic ants. Here we
review recent advances regarding the physiological, behavioral, life-history,
colony, and ecological characteristics of Cataglyphis and consider perspectives
on future research that will build our understanding of organic adaptive
responses to desertification.
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Species richness: the
number of species that
coexist in a defined
habitat

1. INTRODUCTION TO CATAGLYPHIS: AN ANT GENUS ADAPTED
TO DESERT ENVIRONMENTS

Suppose you are outside in southern Morocco. It is 3:00 PM and the sand under your feet reaches
70◦C. You would probably not expect to encounter any animal in such conditions. Still, you cross
paths with an ant of silvery appearance. This Cataglyphis bombycina forager is only 1 cm long, but
she is flitting about at great speed. In fact, wherever one might be in the Palearctic desert belt,
from the Sahara to the Gobi and throughout the Mediterranean basin, you are very likely to find
fast-running thermophilous Cataglyphis ants. This genus, which includes 110 recognized species
(19), belongs to a lineage that diverged from Formica mesic wood ants more than 60 Myr (17, 100)
and may have started to radiate with the expansion of xeric habitats during the Miocene. Today,
these charismatic ants are commonly found in dunes, steppes, scrubland, and anthropic areas
such as public dumps or dust roads from sea level up to altitudes of 3,000 m. These individually
prodigious foragers, championed by Rüdiger Wehner and coworkers over the past 50 years (140),
have become a model system for studies in ecology, neuroethology, and social evolution.

2. INDIVIDUAL AND COLONY-LEVEL TRAITS ENHANCING
SURVIVAL IN DESERT ENVIRONMENTS

2.1. The Ecological Advantage of Foraging at High Temperatures

Arid and desert habitats offer a range of thermal conditions that can be used successively by different
ant species to reduce competition among them. The way thermal niches are partitioned depends
on species dominance (32). Dominant species live in large colonies with potentially hundreds of
thousands of workers and can fiercely defend food resources. In contrast, subordinate species have
relatively small colonies and behave less aggressively (23). Cataglyphis species typically belong to
the second category, with colony sizes of generally less than a few hundred workers. In arid and
semiarid Mediterranean ecosystems where ant communities are rich, foraging at high temperature
allows Cataglyphis to exploit food resources through reduced competition (37, 38). Furthermore,
at more southerly latitudes, ecosystem productivity and species richness decrease, but Cataglyphis
ants persist because high thermal tolerance allows them to escape the pressure of predation by less
thermotolerant vertebrates (141). More generally, many studies have documented that subordinate
ant species are more tolerant to stressful temperatures than are dominant species (10, 11, 28, 31, 34,
69, 103), suggesting the existence of a dominance-thermal tolerance trade-off (34, 61). However,
the evolutionary path that led to ant communities structured by temperature remains poorly
understood. Did stress tolerance evolve in response to competitive interactions or independently
in arid habitats? The predominant scenario to explain the evolution of thermophily is that heat
tolerance has evolved in response to competitive interactions in relatively mesic environments,
permitting subordinates to use thermally unfavorable time windows primarily for competitor-free
foraging and then secondarily to colonize more extreme habitats (13).

2.2. The Thermophilia Syndrome

Foraging at high temperature requires a set of behavioral, morphological, and physiological adap-
tations that can be expressed at the individual and colony levels. These adaptations, which together
constitute what Wehner & Wehner (144) term a thermophilia syndrome, have evolved indepen-
dently in Cataglyphis and in other thermophilous ants (e.g., Ocymyrmex, Melophorus). Among them,
behavioral traits are probably the most rapidly inducible and plastic. In the hot regions of Spain and
North Africa, Cataglyphis colonies modulate their rhythm of foraging activity to seasonal and daily
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a b

c d

Figure 1
Cataglyphis ants show several adaptations to heat and desiccation. (a) C. rosenhaueri forager from southern Spain, whose long legs isolate
its body from the hot ground surface. (b) Silver appearance of C. bombycina is produced by hairs that reflect sunrays. (c) Species of the
C. bicolor group have a modified petiole for raising the abdomen, which increases maneuverability and speed. (d ) During colony fission,
C. hispanica workers are transported to a new nest location by a few individuals. Photo credits: (a–c) Fernando Amor, (d ) Teresa Cerdá.

temperature oscillations, reverting from a unimodal rhythm of activity in the relatively cool spring
to a bimodal rhythm in the more thermally stressful summer (5, 144). Individual foragers also use
thermal refuges by climbing up sticks to alleviate heat stress at high ground temperatures (35, 144),
a behavior that is triggered by the perception of ambient temperatures (144) and solar position (5).

Other important adaptations for heat tolerance are body size and morphology (Figure 1).
Cataglyphis workers’ legs are considerably longer than those of similarly sized, phylogenetically
related species from mesic habitats (124). Longer legs raise them above the ground, reducing heat
exposure, enhancing convective cooling (124), and increasing running speed (77) and foraging
efficiency (7). Interestingly, in C. tartessica (formerly C. floricola), queens, which are less exposed
to temperature than are workers, have relatively shorter legs (6). Species in the albicans and bicolor
groups also have a modified petiole, allowing them to raise the gaster above the thorax (Figure 1).
Adopted while running, this position not only protects organs from high temperatures (31) but
also reduces the moment of inertia and increases maneuverability (99, 139), thus contributing to
speed and convective cooling at a low energetic cost (114).

Cataglyphis species show a high degree of intra- and interspecific body-size variation. Some
species, such as C. tartessica, have small monomorphic workers (36), whereas others, particularly
in the altisquamis and bicolor groups, show marked polymorphism, which in some cases is bimodal
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Fertility signal:
a signal emitted by
reproductive females
(queens) intended for
other females (workers
and queens), resulting
in reduced
intracolonial conflicts

(35). Polymorphism may be a colony-level response to cope with high temperature. Large workers
are costly to produce, but they are more heat tolerant and can prolong foraging activity into hotter
hours (35, 42). Species also show marked differences in thermotolerance for ants of the same size,
suggesting other thermotolerance mechanisms (35). Two independent studies have shown that
the distinctive silvery appearance of C. bombycina is due to triangular hairs that cover the dorsal
and lateral sides of the body and contribute to thermoregulation by reflecting solar radiation and
increasing emissivity and heat discharge (103, 145).

Morphological thermoregulation is complemented by cellular processes such as the synthesis of
heat shock proteins (HSPs), which prevent protein denaturation and maintain enzymatic activity
even at elevated temperatures. In C. bicolor and C. bombycina, HSPs are synthesized at nonstressing
(25◦C) up to almost lethal (45◦C) temperatures. This unusually high baseline production may
constitute a preadaptation against sudden heat shock when a Cataglyphis forager exits from the
relatively cool nest (64). Whether constitutive production of HSPs is a general phenomenon
among Cataglyphis species awaits further investigation.

2.3. The Dual Function of Cuticular Hydrocarbons

Cuticular hydrocarbons (CHCs) serve a dual function in ants. They provide an external hydropho-
bic layer to prevent desiccation and also act in communication (71). They have a role as nestmate
recognition cues (88, 137) and fertility signals (27, 54, 95, 97, 111). CHC composition is a blend
of straight-chain alkanes and branched, generally monomethyl- and dimethyl-alkanes. Compared
with branched alkanes, linear alkanes provide a much more effective impermeability to water (66).
Methyl branching, by contrast, provides greater molecular diversity; therefore, branched alkanes
may carry more information than do linear alkanes, facilitating their evolution as communicative
molecules (1, 68). Moreover, the biosynthetic route of branched hydrocarbons differs from that
of linear ones (18), suggesting their independent evolution. Thus, linear CHCs are well suited to
preventing water loss, whereas branched CHCs meet the prerequisites for functioning in nest-
mate recognition. Accordingly, foragers of the desert-dwelling ant Pogonomyrmex barbatus have a
greater abundance of linear alkanes than do their nestmate nurses that are less exposed to high
temperatures (138).

The role of CHCs in nestmate recognition was shown experimentally in C. niger and probably
occurs in other Cataglyphis species (88). Although Cataglyphis is not highly territorial and in many
cases nests share foraging areas, the response to nestmate recognition cues is context dependent.
In C. fortis, aggression toward foes is high around the nest entrance but declines rapidly with
distance (82, 83). This is in accordance with Cataglyphis not being highly territorial and in many
cases sharing foraging areas. At the population level, however [e.g., C. niger (119)], aggression
toward neighboring nests is much greater than toward nests from distant populations, a result that
is in line with the nasty neighbor hypothesis (101).

The role of CHCs in signaling fertility has also been shown in many ant species but has
not been investigated in Cataglyphis. Nevertheless, in many ant species including Cataglyphis, the
abundance of branched hydrocarbons allows for an idiosyncratic signal, but one that greatly reduces
the waterproofing efficacy of the cuticle (67). This reduced efficacy may provide a handicap and
contribute to the honesty of the fertility signal (72, 147).

2.4. Homing and Navigation

In contrast to most ant species that rely on chemical communication while foraging, Cataglyphis do
not utilize trail pheromones, and there is little evidence for any type of recruitment (4, 115). For
Cataglyphis, three factors may have rendered mass recruitment via trail pheromones ineffective.
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Path integration
(PI): the process by
which an animal
integrates the
direction and length of
path segments to
estimate nest location

First, trail pheromones may be inefficient at high surface temperatures because they are slightly
volatile and may rapidly degrade (118, 133, 134). Second, Cataglyphis workers are largely scavengers
of sparsely dispersed food items (53), necessitating communication with nestmates only when the
food item is too large to be carried alone. Third, in relatively small colony sizes, as occur in most
Cataglyphis species, lone foraging is efficient enough for colony needs (12, 116). The second and
third factors may explain why species that live in less arid environments (e.g., the cursor group)
have not reverted to mass recruitment despite the alleviation of some ecological constraints.

A consequence of the lack of chemical recruitment is the recourse to individual strategies for
orientation during foraging. As an individual, an ant forager has two main navigational strategies:
path integration (PI) and environmental features. Central-place foragers when naive or with no
trails to guide them need an innate strategy that is not dependent on experience. For most animals,
this strategy is PI, wherein the direction and length of path segments are integrated to maintain a
continuous estimate of the distance and direction back to the nest. For ants, distance information is
provided by something akin to step counting for ordinary foragers (146) and optic flow for ants that
are carried between nests (112). Sky cues, such as sun position and polarization patterns created
by scattered sunlight, provide compass information (57, 142). To complement PI, individuals can
also learn about environmental features (81) that can be used as guides to habitual foraging routes
(44, 98, 120). This strategy is characteristic of experienced foragers.

PI is not precise enough to pinpoint a nest entrance, and Cataglyphis foragers readily learn
visual and olfactory cues that define the nest position. Experimental addition of visual cues (125),
odor cues (127), or both (126) has shown that ants rapidly learn the spatial configuration of sensory
information around the nest entrance. Such learning is complemented by an innate strategy, shown
in C. fortis, where foragers perceive and follow the plume of CO2 emitted from a nest entrance (28).
This reaction to CO2 is dependent on ants having completed a route guided by PI; otherwise, they
ignore any CO2 plume they intersect to avoid homing to a neighboring nest and being attacked
by its residents.

These individual strategies are important for Cataglyphis but are present even in ant species that
show mass recruitment (81, 143). Indeed, when individual knowledge is in conflict with public
information provided by trails, individuals will, in general, trust their own knowledge (69; but
see 8). Because Cataglyphis species share a navigational tool kit with most other ants, the ques-
tion becomes, how do ecological and social constraints manifest in individual orientation? Just
as longer legs (see Section 2.2) lead to increased speed, desert ants also possess sensory systems
that are adapted for navigation. Cataglyphis species living in featureless terrain, such as C. fortis in
the North African salt pans, have a horizontal band of high-density photoreceptors across their
compound eyes (148). This enables the extraction of landmark information that may be restricted
to very small shrubs and bushes on the horizon of such terrain. The visual systems of desert ants
also have sensory adaptations that extract celestial compass information. The dorsal rim area of
the eyes of many insects contain polarization sensitive ommatidia (87). The eyes of Cataglyphis
ants, in particular, have large dorsal rim areas, and tuning of their polarization sensitivity is pre-
cisely organized (86). Such adaptations are unlikely to be unique features of Cataglyphis species.
However, compared with other desert ants, Cataglyphis show fast, very-long-distance foraging
and accurate PI (28, 76), suggesting a behavioral benefit from an increased investment in sensory
physiology.

Foragers of Cataglyphis and of many other ant species are excellent navigators. What sets
Cataglyphis apart, in terms of navigation, learning, and memory, is a long history of studies of these
species (120). Given the practicality of studying the individual foraging of Cataglyphis in open or
semiopen habitats (140), these ants have become a model system for navigation studies. Cataglyphis
may now be used to relate the development of specific neural structures to the organization of
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foraging (128). Thus, Cataglyphis species are likely to be a rare system in the study of learning and
memory, one in which we can study interactions among ecology, behavior, and neuroscience.

3. THE GREAT DIVERSITY OF SOCIAL TRAITS

3.1. Sociogenetics and Unusual Reproductive Systems

Cataglyphis ants are characterized by a remarkable diversity of breeding systems and modes of
reproduction (Table 1). Phylogenetic inferences support the idea that monogyny and polyandry
are the ancestral conditions and that several independent evolutionary transitions toward other
breeding systems have subsequently occurred (11). For instance, in C. niger, tens of queens are
distributed over several nests that extend over a large territory and that are interconnected by con-
stant worker exchanges (91, 119). In addition, there is a tenfold variation in the level of polyandry
across species: Although the majority of queens mate with 2 to 8 males (10), some species are
monandrous, and C. savignyi queens mate with up to 14 males (Table 1). Males can also mate
multiply in C. cursor (49).

Multiple mating by queens and males sets the stage for sexual selection. In species producing
new colonies by colony fission (see Section 3.2), mating occurs near the nest entrance where
workers may affect precopulatory mate choice (73, 74). Moreover, sperm competition may generate
intense directional selection on sperm traits that enhance fertilization success, such as sperm
production and size (16). A comparative study across 15 Cataglyphis species provides evidence that
sperm production but not sperm length covaries with the level of sperm competition: Investment in
sperm production decreases significantly with decreasing paternity frequency (10). In addition, in
the highly polyandrous species C. savignyi, males ejaculate bundles of spermatozoa that collectively
swim faster than do solitary cells (107). Such bundles, which also occur in other species, suggest
that sperm cooperation (rather than sperm length) could be an evolutionary response to selection
via sperm competition.

Queens of several Cataglyphis species conditionally use sexual and asexual reproduction for the
production of nonreproductive and sexual offspring, respectively (60, 90, 106) (Figure 2). Although
fertilized eggs yield workers, daughter queens commonly derive from thelytokous parthenogenesis
(41, 108). In some species of the altisquamis group, asexual production of daughter queens also
occurs through social hybridogenesis (51, 60, 90). All queens mate with males from a different
genetic lineage and produce hybrid workers. In contrast, new queens are pure-lineage individuals
produced asexually or, occasionally, from intralineage mating. As a consequence, lineages remain
genetically distinct over generations. This corresponds to a unique case of hybridogenesis at the
social scale, where both the maternal and paternal genomes are expressed in the worker force (i.e.,
the soma of the colony), whereas the new queens and males (i.e., the germ line) transmit the genetic
material of the mother only. This unusual reproductive system leads to a strong caste-genotype
association among females, whereby hybrid and pure-lineage eggs have lost the ability to develop
into queens and workers, respectively (52). A few other forms of social hybridogenesis with strong
genetic influence on caste determination have been documented in ants (122). Interestingly, more
than half are from species living in arid environments, such as Pogonomyrmex. Whether living
in harsh conditions influenced the evolution of hybridogenesis and other unusual reproductive
systems in ants remains unknown. Unfortunately, the number of described cases in the literature
is still too small to allow testing this kind of hypothesis.

Conditional use of sex and parthenogenesis for the production of workers and queens allows
adult queens to benefit from a genetically diverse workforce without the cost of diluting the
genetic material across generations. However, this should leave males with null fitness because
they transmit their genes to nonreproductive workers only. Nevertheless, males may obtain some
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Table 1 Diversity of social traits in Cataglyphis desert ants

Thelytokyc Colony foundationd

Species
groups Species

Mating
systema

Queen
numberb Workers Queens Field observation/IBD Reference(s)

cursor C. aenescens m-s M+P – – NA/No (nDNA) 45

C. cursor (pilliscapa) m M Yes Yes DCF/Yes
(nDNA+mtDNA)

29, 40, 43, 70, 94,
106, 105, 109

altisquamise C. mauritanica s-d P Yes Yes DCF/Yes (mtDNA) 60, 84

C. velox m-s M/P Yes Yes NA 60

C. altisquamis m-s M – Yes NA 85

C. hispanica s-d M/M+P Yes Yes NA 90, 51

bombycinus C. sabulosa m-s M Yes No ICF/No (nDNA) 123, 132

C. bombycina m M No No NA/No (nDNA) 93, 92

emmae C. emmae m-s M – No ICF/No (nDNA) 79

C. tartessica s-d M No No DCF/NA 6, 3

C. floricola s-d M No No DCF /NA 6

albicans C. theryi m M No No NA/No (nDNA) 93

C. livida m M No No NA/No (nDNA) 131

C. iberica – M No – NA 33

C. cubica – M No – NA 30

C. ruber – M No – NA 30

C. albicans – M No – NA 30

C. rosenhaueri – M No – NA 113

bicolor C. savignyi m M Yes No NA 91

C. niger m P No No NA/Yes (nDNA) 91, 119

C. viatica m M Yes No NA 9

Abbreviations: DCF, dependent colony foundation; IBD, isolation by distance; ICF, independent colony foundation; m, obligatory multiple mated
(paternity frequency ≥2, and often ≥4); m-s, multiple-single mated (paternity frequency usually >1, with a variable minority of queens singly mated);
M, monogyny (one queen); M + P, facultative polygyny (both monogynous and polygynous colonies co-occur in the same population); M/P, some
populations have monogynous colonies and others have polygynous colonies; mtDNA, mitochondrial DNA; NA, no data available; nDNA, nuclear
microsatellite DNA; P, polygyny (several queens); s-d, single-double mated (paternity frequency usually ≈1, with a minority of queens doubly mated)
(modified from Reference 10).
aMating system classes according to Reference 22. Mating frequency is determined from the arithmetic mean number of patrilines found from
mother-offspring genetic combinations and/or from direct genotyping of sperm stored in the spermatheca of the queens.
bQueen number is determined from field observations and/or from workers genotypes.
cThelytoky: occurrence of (yes) or failure to detect (no) thelytokous parthenogenesis by workers and queens (i.e., asexual production of new daughter
queens). Thelytokous parthenogenesis is determined from laboratory observations (i.e., worker-produced females) and from queen-daughter genetic
combinations. Worker reproduction usually occurs in queenless colonies.
dMode of colony foundation as determined from field observation; because the population genetic structure is directly influenced by the mode of
foundation, the presence (yes) or absence (no) of an IBD pattern at a local scale (less than a few kilometers), based on nDNA and/or mtDNA markers, is
also given.
eAll species of the altisquamis group sampled so far are characterized by a hybridogenetic mode of reproduction.

Thelytoky: a type of
parthenogenesis in
which an unfertilized
egg develops into a
female individual

fitness through the occasional production of queens by sexual reproduction in some populations
(55) and of queens and males by worker parthenogenesis. Indeed, workers of most Cataglyphis have
ovaries and can produce males by arrhenotokous parthenogenesis and, in some species, females
by thelytoky (Table 1). The production of males and females by queenless workers has been
documented under laboratory conditions in the bombycina, bicolor, and altisquamis groups and in
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a   Classical reproduction

Sexual production

Asexual production (arrhenotoky)

Asexual production (thelytoky)

Queens (2n)

Workers (2n)

Males (n)

Nonhybrid individuals

F1 hybrid individuals

Lineage 1 Lineage 2 Lineage 1 Lineage 2

b   Conditional use of sex c   Social hybridogenesis

Figure 2
Cataglyphis species show a great diversity of reproductive systems. (a) Classical sexual reproduction in hymenopterans: Males derive from
arrhenotoky, whereas females (workers and queens) derive from sexual reproduction. (b) In some populations of C. cursor, conditional
use of sex allows for the production of both males and queens by parthenogenesis, whereas workers derive from sexual reproduction.
(c) In the altisquamis group, males and queens derive from parthenogenesis, whereas workers derive from interlineage fertilization.

Polydomy: the use of
several above-ground
interconnected nests
by one colony

Dependent colony
foundation (DCF):
formation of a new
colony by the
fragmentation of an
existing colony

Independent colony
foundation (ICF):
formation of new
colonies by individual
queens without the
help of workers

semicaptive colonies of C. cursor. However, whether such eggs are laid under natural conditions
and result in viable and fertile adult sexuals remains unknown.

Polyandry has multiple costs for females, including increased risk of predation and sexual
infection (63, 75). Benefits that could outweigh these costs include obtaining sufficient sperm
and reducing the production of diploid (sterile) males. These have not yet been supported by
experimental data in Cataglyphis (56, 109, 132). However, C. cursor workers from different patrilines
differ in their propensity to perform a given task (59), which may suggest that polyandry can
enhance division of labor. Interestingly, in monandrous species of the altisquamis group, workers
are hybrids of two lineages so the loss of genetic diversity within colonies due to monandry may
be offset by high somatic heterozygosity in workers. Other fitness benefits of polyandry may be
the reduction of queen-worker conflicts over the maternity of males and new queens (55, 132)
and improved colony-level resistance to pathogens (121). This may be particularly relevant for
scavengers such as Cataglyphis that are at risk from pathogens from dead arthropods.

Polygyny in the altisquamis group (and maybe in C. niger) results from the adoption of related
queens into established nests. Here polygyny is closely linked with intralineage mating because
queens mated with males from the same lineage cannot produce workers and are unable to found
new colonies. Their only option is to stay in the natal nest and rely on the workforce produced
by another queen (51). In some species, the risk of queen death during dispersal could have
stimulated polygyny. Moreover, by increasing colony size, polygyny (and polydomy) in C. niger
may also provide a competitive advantage against dominant species (23, 25).

3.2. Dispersal and Colony Foundation

Cataglyphis species show both modalities of colony formation that are typical of social insects,
namely independent colony foundation (ICF) and dependent colony foundation (DCF; also known
as colony fission) (48, 110). Under ICF, a mature colony produces numerous queens that disperse
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individually by flight and start new colonies alone, i.e., breeding attempts with high dispersal and
mortality. In contrast, under DCF, a mature colony splits to produce one (or a few) new colonies
of significant size that disperse on foot. DCF thus yields low mortality at the cost of few breeding
attempts and restricted dispersal.

ICF and DCF exemplify the trade-off between offspring number and offspring size faced by
reproducing organisms balancing competition with colonization. Large offspring are better com-
petitors, whereas small offspring are better colonizers, a dichotomy that allows the co-occurrence
of species that differentially exploit the same habitat (65, 130). Overall, stable environments favor
competitors, whereas environmental variability favors colonizers (2). However, habitat patchiness
can select against colonizers when the risk of dispersing to an unsuitable patch is too high (21),
and dispersal can also be selected against in stressful environments if colonizers are more stress
sensitive, for instance, because they are smaller (102).

Deserts are patchy environments comprising limited viable habitats where colonies can es-
tablish a nest (e.g., roots of scattered plants) surrounded by extended inhospitable areas. Desert
organisms are expected to be relatively bad dispersers, an hypothesis supported by the fact that
desert plants show low seed dispersal relative to other plants (58, 135). Desert ants may follow the
same pattern because they are comparable to plants regarding dispersal (mature colonies are sessile
and offspring colonies follow a competition/colonization trade-off ) (48). In ICF ants, queens are
relatively poor flyers and have no knowledge of their environment when they take flight; hence,
they may fail to find a favorable habitat in a desert environment. Moreover, even after finding an
appropriate location, failing to dig a nest sufficiently rapidly will enhance mortality due to heat
and desiccation stress. In contrast, DCF queens disperse on foot: They are more likely to remain
in the same suitable patch as their mother and can count on a large workforce to excavate the nest.

Despite the above, it is still unclear whether DCF is more frequent in desert environments
(48). For DCF in arid environments, data are available for three species, with further anecdotal
observations. As expected, dispersal is restricted, although possibly less so for Ocymyrmex than for
Cataglyphis (Table 2). Typically, only one offspring colony is produced, and it receives approxi-
mately a quarter to one-third of the workforce. That is, offspring colonies are very large. C. cursor,
the northernmost and least thermophilous Cataglyphis, differs in producing four offspring colonies
on average, which collectively receive approximately one-half of the workers. Although offspring
colony size varies dramatically in this species, there is some evidence that increasing the size of
the colony is favored over increasing the number of new colonies. Indeed, large mature colonies
produce large offspring colonies but not more offspring colonies (40), and mature colonies seem to
produce larger offspring colonies when colony density (competition) is higher (47), a trend similar
to that found in the thermophilous ant Aphaenogaster senilis whereby colonies produce smaller
colonies when colony density is low (24). In addition, workers allocated to offspring colonies are
on average larger than those that remain in the mother colony (50), probably to increase the com-
petitiveness and stress tolerance of offspring colonies because large foragers are more robust and
efficient (see Section 2.2). Overall, these data suggest that desert ant species reproducing through
DCF maximize the competitiveness and tolerance of their offspring colony. Yet, whether DCF
is more common in Cataglyphis than in related species from mesic habitats and whether the same
pattern occurs across different genera of desert ants are unclear.

3.3. Population Genetic Structure

The large diversity of reproductive systems, social organizations, and modes of colony foundation
in Cataglyphis can translate into variation in the strength of evolutionary processes such as migra-
tion and genetic drift. For instance, in species with monogyny and single mating, the relatively
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Table 2 Characteristics of dependent colony foundation (DCF) in Cataglyphis and in other desert-adapted genera

Species
Number of

DCF observed

Number of
new colonies
(mean ± SD;

range)

Number of
workers in

new colonies
(mean ± SD;

range)

Resource
allocated to new
colonies (% of

mother colony’s
workforce)

Dispersal distance
(m) of new colonies
(mean ± SD; range) Reference(s)

C. cursor 21 4.0 ± 1.3;
1 to 6

186 ± 214;
30 to 1,284

53 ± 23a 7.1 ± 5.3;
0.9 to 31.2

40, 94

C. tartessica 34 1 99 ± 7 33.6 7.7 ± 0.9;
1.9 to 28.4

6

C. mauri-
tanica

1 1 – – 30 84

Ocymyrmex
picardi

1 1 108b 23 150 20

Ocymyrmex
robustior

1 1 – 30 40 20

Proformica
longiseta

22 (4 colonies
excavated)

1.2 ± 0.6
(1 to 3)c

262 ± 42; 69
to 536

23 ± 9 3.25 ± 0.33;
0.45 to 7.2

62

aResource allocated to new colonies could be determined in only 9 out of 19 colonies. The mother colony could not be identified in the remaining
colonies because queen replacement coincided with colony fission, i.e., the mother queen had been replaced by a young queen indistinguishable from
young queens heading new colonies (40).
bThese included 20 ergatoid queens that were virgin and functioned as workers, as is typical in Ocymyrmex (20).
cTwenty colonies produced one new colony each, and two colonies produced three new colonies each.

Population viscosity:
a spatial pattern of
population genetics
where genetic
differentiation
increases with
increasing
geographical distance

low number of reproductive individuals in a population could enhance genetic drift and increase
inbreeding, magnifying the effect of the low effective population sizes of eusocial hymenoptera
(117). This effect may even be enhanced by the low carrying capacity of Cataglyphis desert envi-
ronments. However, inbreeding is rare in Cataglyphis except in queens of species with thelytoky
(60, 90, 106). The evolution of thelytoky could enhance inbreeding (39), reduce genetic diversity,
and limit adaptive responses to environmental changes (15, 80).

In ants, breeding systems are often associated with female dispersal. Monogyny is often as-
sociated with ICF and polygyny with DCF (26), although there are many exceptions to this
rule, particularly among Cataglyphis species. Because DCF limits female dispersal, it may en-
hance population viscosity (48), thereby affecting the evolution of altruistic behaviors (89, 104,
129) and life-history traits such as reproductive allocation (96). During DCF, restricted dis-
persal concerns females only. Thus, a pattern of population viscosity can occur in mater-
nally inherited genes but not necessarily in nuclear genes because males generally fly and can
mitigate the effect of restricted female dispersal (48). A pattern of isolation by distance for
nuclear and/or mitochondrial DNA markers is shown for two Cataglyphis species with DCF
(C. cursor and C. mauritanica) but not for two other species with ICF (C. sabulosa and C. emmae)
(Table 1), thus supporting theoretical expectations. Yet, the expected connection between the
mode of colony foundation and the pattern of population viscosity at local scales may be atten-
uated if ICF females remain near the mother nest (136) or if male dispersal and frequent nest
relocation reduce population viscosity of DCF species.

At larger spatial scales (>10 km), dispersal may be limited for both ICF and DCF species (48).
At this level, landscape connectivity may strongly impact population genetic structure, especially
in stressful environments. For instance, in C. cursor, the distribution of genetic variability varies
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across habitats that differ in patchiness (43). Whatever the relative importance of geographical
barriers and of restricted dispersal abilities, high genetic differentiation has been detected within
populations over relatively short distances (43, 78, 79). This sets the scene for high levels of genetic
and phenotypic divergence among populations that could be driven by either drift or natural selec-
tion and could ultimately lead to allopatric speciation. For instance, in southern Spain, molecular
evidence suggests that recent (<1 Myr) allopatric speciation between C. floricola and C. tartes-
sica occurred without ecological niche segregation (78). The relatively restricted range of some
Cataglyphis species and their absence from most Mediterranean islands also support the idea of re-
stricted dispersal, which, together with their thermophilous foraging activities, suggests Cataglyphis
species likely retain a strong genetic signal of the impact of long-term environmental changes in
the region in which they live. Cataglyphis species could therefore be very informative for phylogeo-
graphic studies to infer the historical dynamics of biological refuges during Pleistocene glaciation.

4. CONCLUSION AND FUTURE DIRECTIONS

Paleodeserts provide some of the harshest conditions of heat and dryness on Earth. However,
some animals and plants take advantage of extreme climate to avoid competitors or predators.
Adaptations in Cataglyphis are mainly quantitative exaggerations of traits that are present in most
ant species, rather than qualitative innovations. In contrast, how climate and, more generally,
environmental conditions shape the diversity of social systems observed across Cataglyphis species
is unknown. Paleodeserts are relatively unstable, comprising patchy habitats that may both select
for specific modes of reproduction and open opportunities for the evolution of unusual social
systems. The degree of plasticity and the future evolutionary trajectory of these social traits are
difficult to predict. Some traits may be evolutionary dead ends that limit the capacity of a species to
adapt to new environmental conditions. Major limitations for our understanding of the evolution
of Cataglyphis ants are the lack of a comprehensive phylogeny and many ambiguities concerning
species delimitation and identification. Provided these problems are solved, Cataglyphis species
may become a wonderful model system for integrative studies of species responses to desertifi-
cation. Moreover, highly collaborative studies should be undertaken to compare the evolution of
Cataglyphis with that of other desert-dwelling ants from other continents.

SUMMARY POINTS

1. Harsh environments drive unique ecological adaptations, allowing organisms to take
advantage of extreme conditions to reduce competition and predation pressure.

2. Cataglyphis ants possess several adaptations at the individual and colony levels to in-
crease thermotolerance and overcome the limitations of chemical communication in hot
environments.

3. Cataglyphis ants also exhibit great diversity in social organization and mode of colony
founding. The functional connection between such diversity and harsh environmental
conditions is unclear.

4. Integrative and comparative studies between Cataglyphis and other desert-dwelling ants
from other continents may shed light on the impact of environmental conditions on the
evolutionary trajectory of social organisms and allow a better understanding of species
responses to desertification.
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6. Amor F, Ortega P, Jowers MJ, Cerdá X, Billen J, et al. 2011. The evolution of worker-queen polymor-
phism in Cataglyphis ants: interplay between individual-and colony-level selections. Behav. Ecol. Sociobiol.
65:1473–82

7. Anderson C, McShea DW. 2001. Individual versus social complexity, with particular reference to ant
colonies. Biol. Rev. 76:211–37

8. Aron S, Beckers R, Deneubourg JL, Pasteels JM. 1993. Memory and chemical communication in the
orientation of 2 mass-recruiting ant species. Insectes Soc. 40:369–80

9. Aron S, Darras H, Eyer PA, Leniaud L, Pearcy M. 2013. Structure génétique des sociétés et systèmes
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32. Cerdá X, Arnan X, Retana J. 2013. Is competition a significant hallmark of ant (Hymenoptera: Formi-

cidae) ecology? Myrmecol. News 18:131–47
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38. Cerdá X, Retana J, Cros S. 1998. Critical thermal limits in Mediterranean ant species: trade-off between

mortality risk and foraging performance. Funct. Ecol. 12:45–55
39. Charlesworth D, Charlesworth B. 1987. Inbreeding depression and its evolutionary consequences. Annu.

Rev. Ecol. Syst. 18:237–68
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143. Wehner R, Räber F. 1979. Visual spatial memory in desert ants, Cataglyphis bicolor (Hymenoptera:

Formicidae). Experientia 35:1569–71
144. Wehner R, Wehner S. 2011. Parallel evolution of thermophilia: daily and seasonal foraging patterns of

heat-adapted desert ants: Cataglyphis and Ocymyrmex species. Physiol. Entomol. 36:271–81
145. Willot Q, Simonis P, Vigneron JP, Aron S. 2016. Total internal reflection accounts for the bright color

of the Saharan silver ant. PLOS ONE 11:e052325
146. Wittlinger M, Wehner R, Wolf H. 2006. The ant odometer: stepping on stilts and stumps. Science

312:1965–67
147. Zahavi A, Zahavi A. 1999. The Handicap Principle: A Missing Piece of Darwin’s Puzzle. Oxford, UK: Oxford

Univ. Press
148. Zollikofer CPE, Wehner R, Fukushi T. 1995. Optical scaling in conspecific Cataglyphis ants. J. Exp. Biol.

198:1637–46

www.annualreviews.org • Social Life in Arid Environments 321

A
nn

u.
 R

ev
. E

nt
om

ol
. 2

01
7.

62
:3

05
-3

21
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

 A
cc

es
s 

pr
ov

id
ed

 b
y 

U
ni

ve
rs

ite
 L

ib
re

 d
e 

B
ru

xe
lle

s 
(U

L
B

) 
- 

IB
M

M
 -

 G
os

se
lie

s 
on

 0
2/

01
/1

7.
 F

or
 p

er
so

na
l u

se
 o

nl
y.



EN62-FrontMatter ARI 6 January 2017 10:5

Annual Review of
Entomology

Volume 62, 2017 Contents

Following the Yellow Brick Road
Charles H. Calisher � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 1

Behavioral Sabotage of Plant Defenses by Insect Folivores
David E. Dussourd � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �15

Neuropeptides as Regulators of Behavior in Insects
Liliane Schoofs, Arnold De Loof, and Matthias Boris Van Hiel � � � � � � � � � � � � � � � � � � � � � � � � � � � �35

Learning in Insect Pollinators and Herbivores
Patricia L. Jones and Anurag A. Agrawal � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �53

Insect Pathogenic Fungi: Genomics, Molecular Interactions, and Genetic
Improvements
Chengshu Wang and Sibao Wang � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �73

Habitat Management to Suppress Pest Populations: Progress and Prospects
Geoff M. Gurr, Steve D. Wratten, Douglas A. Landis, and Minsheng You � � � � � � � � � � � � � �91

MicroRNAs and the Evolution of Insect Metamorphosis
Xavier Belles � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 111

The Impact of Trap Type and Design Features on Survey and Detection
of Bark and Woodboring Beetles and Their Associates: A Review and
Meta-Analysis
Jeremy D. Allison and Richard A. Redak � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 127

Tephritid Integrative Taxonomy: Where We Are Now, with a Focus on
the Resolution of Three Tropical Fruit Fly Species Complexes
Mark K. Schutze, Massimiliano Virgilio, Allen Norrbom, and Anthony R. Clarke � � � � � 147

Emerging Themes in Our Understanding of Species Displacements
Yulin Gao and Stuart R. Reitz � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 165

Diversity of Cuticular Micro- and Nanostructures on Insects: Properties,
Functions, and Potential Applications
Gregory S. Watson, Jolanta A. Watson, and Bronwen W. Cribb � � � � � � � � � � � � � � � � � � � � � � � � 185

Impacts of Insect Herbivores on Plant Populations
Judith H. Myers and Rana M. Sarfraz � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 207

viii

A
nn

u.
 R

ev
. E

nt
om

ol
. 2

01
7.

62
:3

05
-3

21
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

 A
cc

es
s 

pr
ov

id
ed

 b
y 

U
ni

ve
rs

ite
 L

ib
re

 d
e 

B
ru

xe
lle

s 
(U

L
B

) 
- 

IB
M

M
 -

 G
os

se
lie

s 
on

 0
2/

01
/1

7.
 F

or
 p

er
so

na
l u

se
 o

nl
y.



EN62-FrontMatter ARI 6 January 2017 10:5

Past, Present, and Future of Integrated Control of Apple Pests: The New
Zealand Experience
James T.S. Walker, David Maxwell Suckling, and C. Howard Wearing � � � � � � � � � � � � � � � 231

Beekeeping from Antiquity Through the Middle Ages
Gene Kritsky � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 249

Phylogeny and Evolution of Lepidoptera
Charles Mitter, Donald R. Davis, and Michael P. Cummings � � � � � � � � � � � � � � � � � � � � � � � � � � 265

The Ambrosia Symbiosis: From Evolutionary Ecology to Practical
Management
Jiri Hulcr and Lukasz L. Stelinski � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 285

Social Life in Arid Environments: The Case Study of Cataglyphis Ants
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